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Abstract

Many plastic second gradient models have been developed in the last 10 years. However some plastic second gradient
models are nonlocal ones. This paper is an attempt to give a general framework to deal with local second gradient
theories within theories with microstructure, keeping in mind future applications for geomaterials. It is advocated that
particular elasto-plastic local models with microstructure, namely local second gradient and Cosserat second gradient
models, which are the least developed in the literature have some advantages which are somewhat promising. One main
objective of this paper is to present these two families of models. The first one (Cosserat second gradient model) is
shown to be well adapted to granular materials. The second model family is likely to be a good model for cohesive
geomaterials. Another aim of this work is to give a method to obtain basic solutions, which can be seen as localization
analysis, in one and two dimensions cases. The key point of this method is the use of patch conditions between loading
and unloading parts. © 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The second gradient models have often been used since the pioneering work of Aifantis (1984) and Zbib
and Aifantis (1988a,b). In most cases, the second gradient approach is treated within the flow theory of
plasticity. In this context, elasto-plastic second gradient models have been developed, involving the second
gradient of the plastic strain in the consistency condition and/or the flow rule (see e.g. Vardoulakis and
Aifantis (1991), de Borst and Muhlhaus (1992a,b), Muhlhaus and Aifantis (1991), Pamin (1994)). Such
models can be called nonlocal second gradient plasticity models, as the constitutive equation in its incre-
mental form is itself a partial differential equation.
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The approaches of Chambon et al. (1996) (see also Chambon et al. (1998) and Matsushima et al. (2000))
and Fleck and Hutchinson (1998) (see also Fleck and Hutchinson (1997)) are different. The first one which
is developed in the following for two dimensions, is the straight generalization of the classical flow theory of
plasticity. The second one is both a generalization of the deformation theory of plasticity and of the flow
theory of plasticity (see Fleck and Hutchinson (1998)). Some developments, similar to the ones presented
here (see Fleck and Hutchinson (1997)), have been made for modeling metals. However the main difference
arises from the motivations. The Fleck—Hutchinson theory is intended to model metal plasticity whereas we
want to model geomaterials. Classical (without second gradient effects) metal plasticity is based on firm
microscale studies. Such studies has been recently extended with some adding assumptions. This provides a
mechanism-based gradient plasticity theory (see e.g. Gao et al. (1999) and Huang et al. (2000)) which
supports the initially phenomenological Fleck—Hutchinson theory. The state of affairs is quite different for
geomaterials. Even the classical geomaterials plasticity theory cannot be clearly deduced from a microscale
study. On the other hand, as rupture is almost always localized and as localization exhibits clearly internal
length, it is necessary to explore the possibilities of enhanced models. The only possible way is a study of
phenomenological theories. The granular nature of some geomaterials and the clear difference between the
strain of the grains and the strain of the material itself (see sand behavior for instance) suggests that the
whole family of models with microstructures has to be studied. So in the following more general theories
(than second gradient plasticity theories) are presented and complete solutions for problems involving these
general theories are given. In some cases however (for granular materials see Section 4.3), some micro-
mechanic experiments suggest that one of these models is better.

The problems solved are mainly related to localization and the method used is a generalization of the one
given in Chambon et al. (1998).

We start first from the general theory of media with microstructure following mainly the work of Ger-
main (see e.g. Germain (1973a,b). Other main references in this first part are the work of Mindlin (see
e.g. Mindlin (1964, 1965)) and the book by Vardoulakis and Sulem (1995). Natural generalizations of
the flow theory of plasticity for media with microstructure are then proposed in the second part. In a third
part, we study the links between this theory and the Cosserat theories. A fourth part gives a general
framework for local second gradient plasticity models. Here local theory means that the constitutive
equation is a relation only between local quantities. For these three theories (namely models with mi-
crostructure, Cosserat and second gradient models) which use generalizations of the theory developed
in Chambon et al. (1996) and Chambon et al. (1998), one-dimensional solutions of the rate boundary
value problems are given. In the fifth part, some local second gradient models are developed in the
two-dimensional case and a Mohr-Coulomb model is presented. In a last part, analytical two-dimen-
sional solutions, which can be seen as localization studies for such models, are given. Finally, applications
for the Mohr—Coulomb model are computed. It can be seen that different length scales are involved in these
solutions.

It is necessary to specify what the main assumptions of this paper are. First, we restrict our study to
the so-called small strain assumption. This means that the different configurations of a continuum body
are assumed to be identical. Second for the sake of simplicity, we do not consider couple body forces,
but only classical ones. The third main restriction of this study is that we deal only with quasi-static
problems. This means that we neglect the inertia terms and the so-called microinertia effects as well. The
boundaries of studied bodies are assumed to be smooth enough to define one and only one normal for every
point.

Let us finally give the principles of our notations. A component is denoted by the name of the tensor (or
vector) accompanied by tensorial indices. All tensorial indices are in lower position, as there is no need in
the following of a distinction between covariant and contravariant components. Upper indices have other
meanings. The summation convention with respect to repeated tensorial indices is used. In order to avoid
confusions, squares are systematically denoted with parentheses.
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2. A general theory for continua with microstructure
2.1. Some kinematic preliminaries

Kinematics of a classical continuum is defined by a displacement field denoted u;, function of the co-
ordinates denoted x;. For some media involving grains or crystals (such as for instance soils and rocks),
such a description is sufficient in numerous applications. On the other hand, it is well known that some
experimental results, especially those exhibiting a clear scale effect (such as localization phenomena) cannot
be predicted by classical modeling. It is then reasonable to add to the previous description a field of second
order tensors which models the strains and the rotation of the grains themselves. This field, denoted f;; is
nonsymmetric and has nothing to do with the gradient of an underlying displacement field, it is called here
microkinematic gradient. In classical models the gradient of the displacement is used to define the internal
virtual work which is a linear form of the displacement gradient. In the case of media with microstructure, it
is consistent to consider the virtual work as a linear form with respect to the displacement gradient, the
microkinematic gradient f;; and its gradient denoted 4, in the following. We now summarize the previous
assumption in the following list of notations:

e y; is the (macro) displacement field
e F; is the macro displacement gradient which means:

Fy= m

] Ox;

e D;; is the macro strain:

Dy = 5(F; + Fy) (2)
® Rj; is the macro rotation:
Ry =3(F; — Fy) (3)

e fi; is the microkinematic gradient. Let us emphasize that it has not to meet compatibility conditions.
e d; is the microstrain:

dyj = 5(fi; + fi) 4)
e r; is the microrotation:
riy = 3(fiy = fir) (5
® B is the (micro) second gradient:
0 ij
i =57 (6)

2.2. The internal virtual work

In order to define the internal virtual work it is necessary to assume that virtual variables corresponding
to the previous kinematic variables, can be defined and that dual static variables can be defined too. The
principle of material frame indifference states that the same virtual work has to be retrieved with kinematics
defined with respect to two different frames each one having a solid body motion with respect to the other.
Thus the virtual work has to depend only on the macrostrain, the relative deformation gradient (i.e. the
difference between the macrodisplacement gradient and the microkinematic gradient) and the (micro)
second gradient (see e.g. Germain (1973b)). Denoting with a * virtual quantities, the density (per unit
volume) of internal virtual work can be written:
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w' = ayDj; + v (f; = F) + i (7)

o; is called here the macro stress. 7; is an additive stress associated with the microstructure, it is not
necessarily symmetric and is called microstress. y;; which is related with £, is called the double stress. We
have to be careful here that Dj; and F;; are depending on a virtual displacement field u; by the way of
equations similar to Egs. (1) and (2). Similarly 4}, is depending on f;; by an equation similar to Eq. (6).
Finally the internal virtual work for a given body Q2 reads:

i — / W do = / (03D, + Ty — F) + 7l o (8)
Q Q
Other decompositions of the virtual work are possible as it will be seen for instance in Section 4.

2.3. The external virtual work

In order to be able to get the balance equations it is necessary to make some assumptions about the
external virtual work. This means that we introduce here the external forces. We do not want to give the
more general case, so we assume that only classical body forces (denoted G;) are applied, this means
precisely that there is no body double force (see e.g. Germain (1973b) for more general assumptions). On
the other hand, we assume that not only the classical traction forces ¢ but also double surface tractions Tj;
are acting on the boundary. Finally, denoting as usual 0Q2 the boundary of Q, the external virtual work
reads:

W = / Giu; dv + / (tiu; + Tyf;;) ds ¥
Q oQ

G; is assumed to be known in every point of @, #; and similarly 7;; are assumed to be known at least on a
part of 0Q.

2.4. The balance equations and the boundary conditions

By equating the external virtual work (Eq. (9)) and the internal virtual work (Eq. (8)) for all kinematic
admissible virtual fields, we get first the balance equations and second the boundary conditions (the one
involving the given external forces). A kinematic admissible virtual field is a field which is sufficiently
smooth and which has a null value on the part of the boundary where the corresponding real field is
prescribed. At this step let us emphasize that there is no link between u; an f;;. We do not present here the
calculations which are classical and based on one integration by parts and the divergence formula. So we
get the balance equations:

0(a; — 1)

o 1
o, +G =0 (10)

aXijk _
ka

and the static boundary conditions:
(0 = Tp)n; = 1 (12)

Yiphk = T (13)
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where 7; is the external normal to the boundary 0Q. In order to get a complete problem, it is necessary to
prescribe on the boundary 0f2 either values of ¢; and T}; or values of u; and f;;. Like in classical media it is
possible to assumed that for some part of 02 some mixed boundary conditions are prescribed.

3. Flow theories of plasticity for microstructured continuum

In order to make our problem complete, it is necessary to specify the constitutive equation. Let us denote
now fF;; = f;; — Fj;. It is natural to generalize the classical way of building constitutive equations given by
Truesdel and Noll (1965). The generalized stresses a5, 7;; and y,; denoted generically 2 are known in every
point of the material if the history of the generalized strains Dy;, fF;; and %;; denoted generically E is known
at the same point. The history of the whole kinematics gives the set of different stresses.

() =T(E®),t€0,¢]) (14)

where ¢ is the time and # a given time. This equation defines a local continuum because the generalized
stress depend only on the local kinematics history.

We can first consider a hyperelastic model by defining a potential IT from which X is deriving.

drn
X=— 15
dE (15)

If we assume moreover that this potential is quadratic, then the generalized stress X is linear with respect to
the generalized strain E. A possible choice is the following.

I = %{(Dijriljlekl +fF;jF§jkl(fF}€l) + hiij?jklnznhlm”)} (16)
where I’ }]_kl, I f/.k, and I' ?I.k, are symmetric tensors (this choice is not the most general one). Then:

oy = Iy Dua (17)

Tij = F?jszﬂc/ (18)

Kijke = F?jklmnhlmn (19)

3.1. A one-mechanism flow theory of plasticity

It is straightforward to develop an isotropic elasto-plastic model involving one plastic mechanism, as a
generalization of the classical flow theory of plasticity. The generalized strain rate is split in an elastic part
and a plastic one.

E=FE +EP (20)
The elastic part obeys for instance the previous elastic model.

Gy = F;jklbzl (21)

Ty =1 izjklf K (22)

;'{ijk = F?jklmnl;ﬁmn (23)
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Let ¢(oi;, T, 1, k) be the yield function, where « is a hardening parameter. It has to remain negative or
null ¢(01/7 Tij, /{l/lm ) <0.

In the elastic zone, if ¢(oy, i), 1, %k) <0 or for unloading conditions, if qb(a,j,r,],,(uk, k) =0 and
(j)(au, Tijs Li> K) < O then the strain rate is only elastic E = E* and Egs. (24)—(26) give the evolution of the
stresses.

0 = F}jk[Dkl (24)
ty =1 izjklj Fu (25)
Zijk t]klmnhl”m (26)

Otherwise, for unloading condition ¢(ay, 75, 1,4, x) = 0 and d)(o,-j,r,-j,x,-jk, k) =0, it is assumed that the
direction of the plastic strain rate is known:

Db =) (27)
TE =)} (28)
i =, (29)

where A is the plastic multiplier and npf} , w{, and lﬁfjk are the directions of the plastic strains which are given
functions of the state (the stress and the hardening parameter). The consistency condition (Eq. (30)) and the
hardening rule which gives the relation between x and for instance the plastic strain allow to compute the
stress rate for any strain rate when plasticity takes place.

op . 0. | 09 6¢>

76['4’7‘5['4’ ; +
aO’,‘j / aT,‘j / 6)(,-]- l{/k aK

=0 (30)

Let us denote as usual /2 the hardening modulus

% .
=—-1 1
K h (31)
and defining H as
¢> ¢ 0¢
H=h + ljkllpkl . l]kl {Il: i ay . Fl/k/mnl///mn (32)
l Liji

If loading occurs, then we have

. ) 1 ) .1 ) ,
0ij = Fz!jk/Dkl H Fll/pqlpg?q a Frlnnlek[ H Fllqulpg?q a imklkal H Fllqulp;?q a krs‘/mnhlmn (33)
1 ) 1 3 1 o)
ljklfF;fl thqul//fF Frlnnlekl Flszql//ﬂ: mnklfF;fl lszql//;}; a kr?lmnhlm” (34)
; 1 w09 1 n 09 1 w09
Xijk 1/k1mnh/’”” - F?jkpql l/qur 6 Frlnnlekl F?jkpquppqr af mnklfF}f/ F?jkpqu//pqr aX krslmnh/m"

(35)

Egs. (33)-(35) show clearly that in the case of one mechanism, even without any elastic coupling between
kinematic variables, the model exhibits a coupling due to its plastic part. For the plastic branch, the



R. Chambon et al. | International Journal of Solids and Structures 38 (2001) 8503-8527 8509

macrostress rate depends not only on the macrostrain rate but also on the microkinematic gradient rate and
on the second gradient rate. Similar observations are available for the microstress rate and the double stress
rate.

3.2. A multi-mechanism plastic theory

It is straightforward to develop an elasto-plastic theory with several mechanisms. In particular it is
interesting to consider a model with three mechanisms, each one corresponding, respectively, to the
macrostress, the microstress and the (micro) double stress. We have to deal with three plastic multipliers. In
geomechanics for instance, physical reason may lead to do so, the microstress would be linked to grain
straining and macrostress to rearrangement of grains. Assuming that these three mechanisms are inde-
pendent on each other, we define three yield functions ¢°(c;;, k%), ¢*(1;, k%) and ¢*(y;,x*) and three
hardening parameters k°, k* and x” corresponding to macrostrain, microstrain and microstrain gradient,
respectively. As the three mechanisms are supposed to be independent, we get three plastic multipliers
denoted A°, A" and A%, respectively, and then according to the loading criterion of each mechanism, either we
get relations similar to Egs. (24)—(26), or we get the following Egs. (36)—(38) according to which mecha-
nisms are loading.

Fl lpD - F:nnlekl

1 1/Pg " Pq DG
=T kszl - 2 (36)
] he + ¢ '10
0T mnkl kl
JF 0¢° 2 fF
. g l/pq 4 Gy | it/ Fe
Ty = Fijklkal e 3 2 7F (37)
+ Oty =~ mnkl " kl
3 h  3¢*
. Fijkpqup pqr 6/1H qi.vlmnhlmﬂ
Xijk ljklmnh]m” - (38)

hL + ﬁzm qustuv lptuv

where /%, h* and A* are the three hardening modulus corresponding respectively to the three mechanisms.
Obviously many other possibilities are available to built up a multi-mechanism plasticity model for media
with microstructure. A multi-mechanism theory with coupled mechanisms is easy to study too but for
brevity we do not want to detail it here.

3.3. Energetic consequences

The advantages of flow theories of plasticity are well known, and we retrieve them for these theories with
microstructure. From a thermodynamic viewpoint, the variation of the internal mechanical energy I and
the energy dissipation @ are:

I = 0,5+ 1/ F + 2,08 (39)

ijk

o= O-ing‘ + TijfE‘? + Xijkhg'k (40)

The energy dissipation @ has to be negative or equal to zero. The sum of these two quantities is equal to the
external mechanical power supply, it is then easy to check the thermodynamics consistency of this simple
theory.
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3.4. One-dimensional applications

3.4.1. Assumptions

In order to have some insight into the behavior of the models presented above, let us study a one-
dimensional problem. Denoting x the space variable, we assume that displacements denoted u are measured
along the same axis as x. The derivative with respect to x is denoted by a ’. The macro strain has a unique
component denoted «'. The micro kinematic field has only one component denoted f. It corresponds to a
uniaxial (micro) straining along the same axis. The micro (second) gradient is then denoted f’. Each of the
macrostress, the microstress and the micro double stress has a unique component denoted, respectively, g, ©
and y. The body forces are assumed to remain constant, so their time derivatives vanish. The displacement
vanishes at one end (say for x = 0) and the applied force F is known at the other end as a given function of
time (for x = /, where / is the length of the studied body). Moreover the double forces at both ends of the
body are assumed time independent. We assume that the state is homogeneous all along the one dimen-
sional body. In this case, balance equations imply that the double forces at the ends of the studied domain
and the body forces vanish. In the following, solutions of the rate problem are searched.

3.4.2. Differential equations
For this rate problem, balance equations (10) and (11) yield, respectively:

¢ —1=0 (41)

7—1t=0 (42)
and the static boundary conditions (12) and (13) become for x = /:

G_i=F (43)
and for x =0 and for x = [

1=0 (44)

the constitutive equation reads in any case (for the one-mechanism theory as well as for the multi-mech-
anism theory, for loading as well as for unloading conditions).

O'_ — FIIZ:I, +I"]2f"+1-'13f"/
't _ lel:l/ + I—'ZZJI(‘ + F23j'l (45)
)'( — F:HZ:[, + 1—'32f"+1"33j'/

The coefficients I'/ depending on the constitutive equation and on the loading—unloading condition of the
corresponding mechanism. Substituting 4, 7 and y in Egs. (41) and (42) yields

(F” o le)i{/l + (FIZ o FZZ)J'(‘/ + (I-vlfi _ FZS)_f// =0 (46)
F3ll:{” _ I‘Qll:l/ _ F22f+ (I"32 _ F23)f'/ + F33f” =0 (47)

If 't — =0, then Eq. (46) is a differential equation in 7, otherwise it allows us to compute u” as a
function of f’ and f”, moreover integrating this equation yields

(F”—F21)i4'—|—(F12—F22)f—|—(F13—F23)f’:F (48)
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and then ' can be computed as a function of / and f’. Finally substituting #” and i in Eq. (47) gives

[_I—QZ(FII _ I—~21) _ F21(1—~22 _ FlZ)]f+ [(F“ _ FZI)(F32 _ 1—-23) _ F21(1—~23 _ I—v13) +F31(F22 _ I—le)]f/
=+ U—GS(FII _I—v2l) +F31(F23 _ F]S)}j‘// — F21F (49)

3.4.3. Principle of solving the problem

This equation is an ordinary linear differential equation the unknown of which is f. Its solutions are
sums of a constant and some products of exponential and sine functions. The final result depends on the
roots of the corresponding characteristic equation. Then using Egs. (46) or (48), it is possible to get #” or i’
and finally by integration # which turns out to be the sum of a linear function (with respect to x) plus once
more some products of exponential and sine functions. Let us notice that the linear part of the displacement
field is the classical solution of a usual first gradient medium (which means a constant strain).

As the coefficients can be different according to the loading—unloading criterion(s), the solution of a
given problem is a patch of elementary solutions like the previous one, each of one being valid for a given
part.

In order to solve completely our problem we have

e to ensure the continuity of &, f, 6 — 1 and y at the common end of two parts,

e to ensure that inside a given part the chosen coefficients I'” are in accordance with the corresponding
loading—unloading condition,

e to ensure that the boundary conditions are met.

A consequence of the previous requirements, is that the points belonging to the boundary of two parts, a
loading one and a unloading one, have to enjoy a neutral loading. This remark is very helpful. In fact it is
the key point of the way to get the solutions when some parts of the body are loading whereas other parts
are unloading (the same point holds in the case of multi-mechanism plastic model, when different parts are
in different partial or total loading conditions). This is a salient difference with solutions got so far with such
constitutive equations where solutions are only available for a linear media corresponding to loading (see
e.g. Vardoulakis and Sulem (1995)) and called linear comparison solid referencing to the work of Hill
(1958) about classical media. Although the solutions are a little bit different, the method is the same as the
one described in Chambon et al. (1998). We do not want to go further as solutions are depending on the
chosen constitutive equation, but it is quite clear that these solutions involve internal lengths, because there
are exponentials and sines in the solution. A more complete study is made at the end of this paper for a less
simple problem but for a particular case of microstructured continua (namely a second gradient model).

3.4.4. A simple multi-mechanism case
When a multi-mechanism model like the one seen in Section 3.2 is used, this means that coefficients I'”
vanish if i # j. In this case Eqgs. (46)—(49) become

Fllil” _ F22_f.‘/ — O (50)

F22f" 4 F33Af"ll =0 (51)

in this case according to the signs of I'> and I'** the basic solutions are either exponentials or sines. The
study is then rather similar to the one described in Chambon et al. (1998), two internal lengths are in-
troduced, one corresponding to exponential the other to sines. Such models can then clearly been used to
model localization phenomena and (or) boundary layers effects.
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4. Microstructured continuum with kinematic constraint: Cosserat theory

Following Germain (1973a) or Vardoulakis and Sulem (1995), Cosserat theories can be seen as sim-
plifications of the previous general theory of media with microstructure. In fact some kinematic constraint
is added to the models presented in Section 2. In the next section another kinematic constraint will be added
yielding local second gradient models. It is interesting here to begin with a virtual work written in a way a
little bit different from that of Eq. (7).

w' = oDy + i (f; — Ryy) + g (52)

This equation is equivalent to Eq. (7) with «; = 0;; — 755
4.1. General Cosserat theory

In a Cosserat theory the microstrain d;; is assumed to vanish. This means that f;; =r; and that
hijx = 0f;;/0x; has then only nine independent components because it is antisymmetric with respect to its
first two indices. The density of virtual work now reads

W' = oD, + 1y (r, = RY) + i (53)

which implies that without any loss of generality t;; is antisymmetric and y,; is antisymmetric with respect
to its first two indices. The internal virtual work becomes

wH = / w'dv = /(oc,—,-ij + ‘c,:,-(rl,*j — R,*j) + X,-jkh;}k)dv (54)
Q Q

Let us notice that when the virtual work equation (which means as usual equating the internal and external
virtual work) is applied in this case, the virtual fields have to meet the kinematic constraint. This means
precisely that 4, derives from r;; which is antisymmetric and which vanishes on the part of the boundaries
where kinematics boundary conditions hold. Applying Eq. (13) for the particular case of Cosserat con-
tinuum implies that the prescribed 7j; if any has to be antisymmetric.

We do not want to go into details, as Cosserat theory is described in many papers. Our purpose is only to
show that this theory can be seen as a particular case of continuum with microstructure and consequently

that complete analytical solutions can be got by the method proposed in Section 3.4.3.
4.2. Flow theory of plasticity for Cosserat continuum

As Cosserat theories are part of the general framework of media with microstructure, it is straightfor-
ward to develop flow theory of plasticity for Cosserat continua. In fact the Muhlhaus—Vardoulakis
Cosserat model (see e.g. Muhlhaus and Vardoulakis (1987) and Vardoulakis and Sulem (1995)) is a one
mechanism flow theory of plasticity as defined in Section 3.1 and it is then possible to get analytical so-
lutions using the method proposed in Section 3.4.3. In the following a special case of Cosserat will be
considered which is a simplified case of the general case and which seems more suitable to model the physics
of granular materials.

4.3. Cosserat second gradient models

We will consider the general second gradient models is Section 5. Here is studied a particular case of
second gradient models which is too a particular case of Cosserat model, so it is called Cosserat second
gradient model. We do not want to study this point here but one of the major difficulties of all the enhanced
models studied in this paper is not only the identification of the parameters needed but even the choice of
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specific functions needed in the model such as yield functions, direction of the plastic strain and so on. It
would be interesting to be guided by experimental data. Unfortunately needed experiments are necessarily
inhomogeneous and very few of such experiments are available. Enhanced models need inverse analysis.

However for granular material we have some insight into physical phenomena. Calvetti et al. (1997)
show clearly that in most cases (except for some exotic loading paths the data of which are not so clear even
if the trends are similar) the macro rotation is the same as the average of the rotation of the grains (here as
2D experiments are performed, the grains are small rods). As we are dealing with continuum media and
thus as the mathematical description of the media needs continuous functions, it is our opinion that the
average rotation of the grains has to be interpreted as the microrotation. So for granular material, it is
reasonable to assume that the macrorotation is equal to the microrotation and so we have

rij = RU (55)

Then the internal virtual work becomes
W= [ wdo= [ () + gahi) do (56)

where £}, = OR;; /0x;. Application of virtual work principle and two successive integrations by part yield

1

only one balance equation:

oy i
Ox;  Ox;Ox;

but as previously two static boundary conditions. These models are a little bit different from the ones
studied up to now.

4.4. A one-dimensional application of Cosserat second gradient model

Denoting x the space variable, we assume that the only nonvanishing displacements, denoted v, are
measured along a normal to the x axis and that all the quantities depending only on x. The derivative with
respect to x is denoted by a '. The macro strain has a unique component %U/. The second gradient has only
two nonvanishing components the values of which are +1¢”. Each of the macro stress, and the double
stress have a unique component denoted respectively o and y. The body forces are assumed to remain
constant, so their time derivatives vanish. The displacement vanishes at one end (say for x = 0) the applied
force F'is known at the other end and the double forces at both ends of the body are assumed not to vary.
As in the general case, we assume that the state is homogeneous all along the one-dimensional body (which
implies the annulment of the double stress at the boundaries) and we look for solutions of the rate problem.
We have

«—7"=0 (58)
and for x = [

G=F (59)
and for x =0 and for x = [

=0 (60)

As a particular case of the constitutive equation studied in Section 3 we can assume the following relations,
the coefficients IV depending on which constitutive equation is used and whether the corresponding
mechanism is a loading one or not.
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o= Flll-J/+F12i]//

;'{ _ 1—v21i)/ + F221-]// (61)
Substituting ¢, and y in Eq. (58) yields:
F”i)” + (Flz _ FZI)i?m + Fzzl-)m/ =0 (62)

This equation is once more an ordinary linear differential equation the unknown function of which is ¢".
The solutions can be built like in Chambon et al. (1998).

When a multi-mechanism model like the one seen in Section 3.2 is used, or if I''? = I'*! according to the
signs of I'® and I''! the basic solutions are either exponentials or sines. The study is then rather similar to
the one described in Chambon et al. (1998), two internal lengths are introduced, one corresponding to
exponential the other to sines. Such models can then clearly be used to model localization phenomena and
(or) boundary layer effects. It is clear however than in the true one-dimensional case like the one discussed
in Section 3.4 the Cosserat effect disappears as no rotation is involved.

5. Microstructured continuum with kinematic constraint: second gradient models

5.1. The main assumption

In the framework, we are working in, a second gradient model is a model where the microstrain is as-
sumed to be equal to the macrostrain.

Jij = Fy (63)
and consequently
Ou;
ij = ! 64
fo= (64)

This main assumption can be used in two different manners. The first one is using Eqgs. (63) and (64),
eliminating f;; in each equation, and consequently assuming that f;; = du; /0x;, this is done in Section 5.2.
Another way is keeping the equations of continuum with rmcrostructure simplifying them only with Eq.
(63) and using Eq. (64) like a mathematical constraint. Then Lagrange multipliers are introduced, corre-
sponding to each component in Eq. (64). They are denoted A;;. The following equations are got.

aul* afl} au * * * *
/Q[a,-]-gj—l— ”ka —l—/ll,( ax, L)}dv-/gGiui dv—i—/m(t,-u[ + Tyf};) ds (65)

which hold for any kinematic admissible fields «; and f;;, and

. aui
Aﬂij(g —ﬁ]) dv=20 (66)
J

which holds for any 4.

This way which seems less natural than the one followed in the next section is in fact very useful es-
pecially in finite element applications because it is difficult to get shape functions meeting the necessary
continuity conditions. Such a method has to be compared to the one developed to deal with incompressible
materials. Eq. (64) is a kinematic condition similar to incompressibility condition and then can be used in
computations following the same idea. This has been done in Matsushima et al. (2000) and will be studied
extensively in a forthcoming paper (see Matsushima et al. (2001)). A two-dimensional application of this
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way of working in finite element method for incompressible second gradient elastic solids have been done
by Shu et al. (1999).

From a physical point of view, as seen in Section 4.3, it is possible to justify the use of Cosserat second
gradient models for granular materials. Cosserat second gradient models can be seen also as particular
second gradient models, in some sense second gradient models are justified as well. Unfortunately, to our
knowledge, there is no micromechanical study that justify the assumption done in Eq. (63). However
generalizing the assumption done for granular materials, it can be reasonable to assume that cohesive
geomaterials (i.e. cohesive soils like clays, rocks and concrete) can be modeled by a second gradient con-
tinuum.

5.2. Equations of a second gradient model

As a consequence of Egs. (63) and (64), the principle of virtual work reads: for every kinematic ad-
missible field u;:

62 * a %
/ (a,-jDz‘/. + ik 3 A g )dv = / G,-u;‘dv-l-/ (tu + Ty a” )ds (67)
Q Q oQ

Let us notice here that we have only one real unknown field »; and similarly only one virtual displacement
field, which is rather different from the virtual work principle applied in Section 2.4 or in Section 5.1. It is
worth noticing a second point, as u; and Ou}/0x; are not independent because the value of u; and its
tangential derivatives (along the boundary) cannot vary independently, #; and T; cannot be taken inde-
pendently. Let us denote D the normal derivative of any quantity ¢, (Dg = (0q/0x;)n;) and D; the tan-
gential derivatives (D;q = 0q/0x; — (0gq/0x;)nxn;). It is more convenient to rewrite the external virtual work
with p; and P like in the following virtual work principle equation:

2. %
/Q(o*,-jD;}—i—x,jkaag )d —/Gu dv+/ (pit; + PDu;)ds (68)

In this case p; and P; can be chosen independently.
Application of virtual work principle equation (68) and two integrations by part give the balance
equation and the boundary conditions. The balance equations read

% a 71//(

G =0 69
Ox;  Ox;0x T (69)

These equations are identical to the ones got for the Cosserat second gradient model but here there is no
symmetry condition about the double stress ;.

Here the boundary conditions are less simple due to the relation between u; and f;; = 0u;/0x; and
consequently between the corresponding virtual quantities on the part of the boundary where the forces
and double forces are prescribed. Finally as it is assumed that the boundary is regular (which means
existence and uniqueness of the normal for every point of the boundary 0Q of the studied domain), after
one more integration by parts, we get
Dy, Dy Dn Dn;

%nj — D);/k n, + D—xllxl.jknjnk sz (ijk = Pi (70)

J

oy — m Dy —

and
Lijk e = P; (71)

where p; and P; are prescribed.
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5.3. Local elasto-plastic second gradient models

It is now easy to develop an elasto-plastic flow theory of plasticity in the spirit of the work done in Section
3. The generalized stresses X are now a;; and g, and the generalized strains E are D;; and 4. However there
is no theoretical reason to assume a link between the plastic part of D;; and the one of 4. If such a link is
assumed then we end up with a nonlocal model. For instance the model of Vardoulakis and Frantziskonis
(1992) and Frantziskonis and Vardoulakis (1992) is not a local elasto-plastic second gradient model because,
as mentioned in Section 1, in this case the constitutive equation is itself a partial differential equation.

5.3.1. The Fleck Hutchinson model

In fact a theory within this framework has already been develop by Fleck and Hutchinson for metals (see
Fleck and Hutchinson (1997)). This model can be called a one mechanism plastic second gradient model
because there is only one yield surface which is a generalization accounting for second gradient terms of the
classical (in metal plasticity) J> flow theory of plasticity. Moreover the authors assume that the plastic flow
is normal to the yield surface which is usual for metal plasticity but is irrelevant for geomaterials. Using this
assumption and working in the general framework of local plastic second gradient model allow the authors
to extend the classical minimum principles to second gradient models. However the analytical solutions
they gave are not completely satisfactory as they do not use the constraints depicted in Section 3.4.3 es-
pecially the neutral loading condition at a common end of a loading part and an unloading one.

5.3.2. General framework of local plane elasto-plastic second gradient models

In this section we intend to give an example of elasto-plastic second gradient model. Some simplifications
are assumed keeping however the main features of the model.

It is assumed that the elastic part of the model is isotropic and linear. In this case as proved by Mindlin
(see e.g. Mindlin (1964, 1965)), we have

61/ == Fl DZ[ (72)

ijkl

Zi/k =T j’e

ijklmn"" Imn

(73)
where I’ }jkl depends as usual on two different parameters and I’ izjk/mn .

We assume that the yield function depends only on ¢,;. Moreover we assume that 4}, ,
model can be written

depends on five different parameters.
= 0. And thus the

Zijk = Fizjklmnhlm’l (74)
for loading and unloading, and
d-ij = F,‘ljk[Dkl (75)

for unloading only and

1 D 3¢ pl
6.=T' D, — Fi/‘pquq 30mn LDt
vt o4 9 ! D

he + ankllpkl

00 mn

for loading only.



R. Chambon et al. | International Journal of Solids and Structures 38 (2001) 8503-8527 8517

In order to clarify the following we deal now only with two-dimensional problems. In this case Eq. (74)
can be rewritten in a matrix form.

lel 7] _a12345 0 0 Cl23 0 a12 a12 0 ] -l:llll T
5(112 0 al45 al45 0 a25 0 0 a]2 1:1112
)8121 0 a® g% 0 a® 0 0 al? /21121
}.(122 B as 0 0 a3 0 ¥ a® 0 h122 (77)
| | 0 & a® 0 & 0 0 a® ||hy
2212 al? 0 0 a® 0 a¥ g% 0 l:l212
X221 al? 0 0 a® 0 a® ¥ 0 /;1221
i 2222 ] i 0 alz alz 0 a23 0 0 a12345 1L 1;1222 |

where, all the terms depend on the five constants a', @, @*, a*, a® defined by Mindlin (see e.g. Mindlin (1965,
1964) according to the following formulae:

a5 =24 + &+ &+ d + )
a =d +2°
a?=d +d)2
a =a /21 d* 1+ d5)2
& =d)2+d

a*t =2(a* + 24"

(78)

5.3.3. Cosserat second gradient models revisited

Cosserat second gradient models can be seen as degenerate cases of second gradient models. However
the way of getting this Cosserat second gradient model from general second gradient models is not
straightforward. Such a derivation needs somewhat long mathematical manipulations and will not be made
in this paper. The difficulties are similar (but concerning second gradient terms) to the ones which arise
when we have to deal with incompressible media seen as particular cases of classical first gradient models.

5.3.4. A plane Mohr—Coulomb second gradient models

In the following it is assumed that the yield function and the direction of the plastic strain are of Mohr—
Coulomb type. Consequently, using for the classical part of the model, the 2D Mohr-Coulomb constitutive
equations of Vardoulakis and Sulem (see Vardoulakis and Sulem (1995), chapter 6), yields the following
model. The second gradient part obeys Eq. (77). The more classical part can be summarized by the fol-
lowing equations. For unloading we have

o1y K+G K—-G 0 07Dy
n| |K-G K+G 0 0/|]|Dy (79)
ol | 0 0 G G||Dn
a1 0 0 G G||Dp»

where K and G are, respectively, the bulk modulus and the shear modulus. In the following, I }jk, denotes as
well elastic moduli as elasto-plastic moduli, according to the context. This is not ambiguous, for instance in
Eq. (80), it is clear that I" }jk, denotes elasto-plastic moduli. And for loading, Eq. (76) holds for i, j € {1,2}
and we have:
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=K+ G (k0™ (kg 0% 2)

1 o —on)\ [ Gon

1 011 — O 0pn—0
F%m:K—G—E(K[H—Gu)(KpH—GM)

27 27
1 GO’lz 011 — 02
F}znzrémz_ﬁ( . >(KH+G72T )
1 GG]Z 2
F}m:ﬂm:Fé112:F§121:G—E( ‘c ) (80)

1 GO'12 02 — 011
Ty =T = E( < >(K'“+GT>

1 0ypy— 0 o —0
Fha K- (R 625 (kg 0% )

1 G2 — 011 Goy,
F;212:F;221:_E(K/3+G 7 )

T

1 0y — 0 0pn—0
Tl K56 (s 6725 (k1 07257

where o;; are the stress, 7 is the stress deviator defined by

= \/(ﬁ)ﬁ(fmf (s1)

and p and f are, respectively, the friction angle and the dilation angle. H is defined by the following
equation:

H=h+Kup+G (82)

where / is as usual the hardening modulus.

6. An application of local elasto-plastic second gradient model
6.1. The problem to be solved

In this section solutions for a boundary value problem are derived. We consider an infinite layer of
geomaterials bounded by two parallel plane corresponding to x = 0 and x = / (see Fig. 1). z is the direction
normal to the studied part of plane. This means that plane strains are assumed in this direction. The ve-
locity field is defined by only two variables namely u in the x direction and v in the y direction. Moreover it
is assumed that u and v are functions of x only. So in the following derivatives with respect to x are denoted
by a ’ which is here unambiguous. The model defined in Section 5.3.2 is used. That is a second gradient
model with only one mechanism and such that 42, = 0. We assume that the present stress state is ho-
mogeneous and we search solutions of the rate problem. As already mentioned in Section 3.4.1, this means
that boundary conditions and body forces history allow for an homogeneous solution. The rates of
boundary conditions are known namely & = 0, # = 0 and 2 = 0 for x = 0 and p; and P, are given for x = /.
Other boundary conditions can be chosen provided a sufficient number of boundary conditions corre-
sponding to the second gradient term are considered. The body forces are assumed to be constant.
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A x
x=I
v <
Fig. 1. Studied domain.
We have
i 0
7] =% o] (83)
I / 1+
_ u EU
=[5 % o

The only nonvanishing components of 4, are

iy = il" (86)
and

hypy = 0" (87)
The balance equation (69) read

d/11 - 2/1/11 =0 (88)
and

&y — iay = 0. (89)
The boundary conditions (Eq. (70)) become for x = /:

611 — i = D1 6 — Jon = P2 (90)
and

Yt :Pl Lo11 :PZ- (91)

Taking into account the boundary conditions, the balance equations can be integrated once, which yields
o1 —?Z/111 =P (92)

and



8520 R. Chambon et al. | International Journal of Solids and Structures 38 (2001) 8503-8527

Gy — }.(,211 ZPZ (93)
Using now the constitutive equations yields

Lyl + Tyt — a2 = py (94)
and

F;m"‘, + F%mi’, — a0 = s (95)

6.2. Partial solutions

Solutions of such a set of equations depend on the values of the constitutive coefficients. These values
depend on the stress value. In fact as we choose to work with isotropic models, only the stress orientation
influences the values of the plastic constitutive coefficients. For a given material, apart from the boundary
conditions, the solution depends only on the orientation of the stress tensor with respect to the chosen axis.
Our problem can be seen as a general shear band analysis where the shear band orientation is assumed but
the stress orientation is free. It is a shear band analysis in the spirit of Vermeer (1982) but for an elasto-
plastic second gradient model.

Solutions of Egs. (94) and (95) are depending on the roots of the characteristic equation (96).

As)* = B(s)’+C=0 (96)

where

A = 1234534
B = a123451g121 + a34F%m (97)
C= Félﬂr%lll - F%Hzpém
Denoting S = (s)*, Eq. (96) reads
A(S) —BS+C=0 (98)
It is worth noticing that A the discriminant of Eq. (98) reads
4= (a123451";121 - a34F}“1)2 + 4‘7]2345“34F}112F;111 (99)

which is positive for elastic moduli and also for elasto-plastic moduli corresponding to materials obeying
the normality rule. For other elasto-plastic materials as C is usually decreasing as the material is loaded (see
Section 6.4), A is positive and the roots of Eq. (98) are necessarily real.

Finally, the solutions of Egs. (94) and (95) have the following forms:

(1) If the two roots of Eq. (98) are positive, then the solutions read

|
i

where U" and V" are solutions of equation:

_ {pl} (101)

2

U/Z
I'//Z

U/l
f//l

U/O )
I'//O

+ [ 0 (2" cosh(n'x) + A2 sinh(n'x) + | Y, | (' cosh(n) + 2 sinh(x))  (100)

U/O

- ! -
Fllll F1112 ~
1 V/O

1
_F2111 F2121_

and (n')* = 8" and (%)* = 2 are the two roots of Eq. (98). Moreover U" and V", i € {1,2} have to meet:
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_ m (102)

(2) If one root of Eq. (98) denoted S! is positive and the other one denoted S? is negative, then the
solutions read

|
R

where U" and 7”° are solutions of Eq. (101). We have (1')* = §' and (0?)’ = —S2and U" and V", i € {1,2}
have to meet Eq. (102).

(3) If one root of Eq. (98) vanishes which implies that C = 0 and the other denoted S is positive, then the
solutions read

U/i

1 i 12345 1
Iy —Sa IAT -
V/i

1 | i 34
Iy I35 — S'a

Fr12
I'//2

U/l
f/ll

U/O

7o (2" cosh(n'x) + A'"* sinh(n'x)) +

(*! cos(w’x) + uPsin(w’x))  (103)

y 0| 1. 1. 2 1
u U )11 12 r -r (x) -I X
' =12 [ cosh(n'x) + 22 sinh(n'x)) + | |22 P e | gl =
v i I} T 2B I B
2111P1 111192 1111
a' P80, pprta¥ 4 BIY 2 (104)
B(I'}yy+1,) a BBy +a¥i T by
1234501 - 3apl - 1
a r11112p2+al Ih : Bl : 2
BT+ 1) al BB oot Ty by

where we have (')> = §'; U" and V", i € {1,2} have to meet Eq. (102).

It is not necessary to study other solutions for the characteristic equation, because as it will be discussed
in Section 6.4, C is the localization criterion of the underlying classical elasto-plastic medium and it is not
likely that we have both C positive and localization. This excludes the possibility of two negative roots for
the characteristic equation.

6.3. Patch conditions and full solutions

Given a stress state, depending on whether loading or unloading condition is assumed, two partial
solutions are possible. A part of the body where the loading solution is used is called a soft part. Similarly, a
part of the body where unloading solution is used is called a hard part. Given a stress state, there are two
different partial possible solutions. Each solution corresponds to formulae chosen among the three possible
ones depicted in the previous section, depending on the value of the constitutive parameters, on the stress
and on the orientation of the stress with respect to the chosen axes. Let us notice that each partial solution
depends on four independent constants.

The solution of a given problem is then a patch of partial solutions. The body is split in hard parts or soft
parts. Let us denote N the number of parts. To get a complete solution, it is necessary to find five unknowns
per part, four ones corresponding to the independent constants and the fifth one to the length of the part.
Globally, we have SN unknowns. At each of the N — 1 junction points it is necessary to write the continuity
of i’ and ¢'. Moreover as a junction point belongs to a hard part as well as to a soft part, at this junction
point the strains have to correspond to neutral loading. In the case of the particular model described in
Section 5.3.4 and used to find the solutions presented in Section 6.5 the neutral loading is characterized by
Eq. (105).

(011 70’22)Gil/+2,u‘CK1;l,+20'12G1.)/ =0 (105)

It is necessary to write the balance equation at a junction point. The ones corresponding to the classical
term are necessarily met as Egs. (88) and (89) have been integrated into Eq. (90). On the contrary continuity
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of y,;, and y,,; at a junction point has to be enforced. Finally every junction point gives us five equations,
which mean an amount of 5(N — 1) equations.

Moreover it is necessary to write the boundary conditions on the two sides of the body which means that
7111 and 75, are known for x = 0 where they vanish and for x = / where they are given by Eq. (91). Finally
the sum of the width of the part has to be equal to /. We end up with a system of 5N equations of SN
unknowns which generally give us &' and ¢’ as a function of x. It is then necessary to check that unloading
condition holds in hard part whereas loading condition holds in soft parts. At the end it is possible to get i
and v as we know that forx =0: 4 =0 and v = 0.

This is the generalization of the method given in Chambon et al. (1998) for a one-dimensional case. We
can build up basic solutions for the rate problem of a local elasto plastic second gradient model. This is
useful to check the numerical codes. It is also interesting to discuss a little bit the conditions of apparition of
the diverse solutions depicted in Section 6.2.

6.4. Discussion

It is worth noticing first that as they correspond to an elastic behavior, the two parameters a'** and ¢*
are positive, so 4 > 0 (Eq. (98)) is always positive and C has the same sign as the product of the two roots of
equation (98). Moreover B has the opposite sign of the two roots sum.

An other important remark is that in fact we can write:

C = det(n;I'};n)) (106)

where n; is the normal to the chosen boundaries (here n; = 1 and n, = 0). This means that C is in fact the
determinant of the acoustic tensor of the underlying first gradient model, involved in the classical Rice
shear band analysis (see e.g. Rice (1976)). This is why we did not study the possibility of two negative roots
for the characteristic equation in Section 6.2. If our medium behaves elastically then C > 0 and B > 0. In
this case the only partial solution is solution 1. In this case, I'},;, = I'5;;; = 0, the two roots of the char-
acteristic equation are positive and we get: ' = I'},,/a** and 4> = I'},,,/a'>*%. Finally there is no coupling
between the two differential equations and the solutions can be written:

i = U + M cosh(n'x) + 1" sinh(n'x) (107)

i = V" + 2* cosh(nx) + 2** sinh(i’x) (108)

The first terms of Eqgs. (107) and (108) describe a homogeneous straining of the whole body.

For moderate plastic parts (which means very high values of /) the behavior is similar to an elastic one,
and only parts obeying Eq. (100) are available.

Let us examine now what happens if the medium behaves more and more plastically. First one of the
root of Eq. (98) vanishes while the other one remains positive. In this case, unloading parts obeying Eq.
(104) become available. Then this root becomes negative and solution (103) corresponds to unloading parts
of the body. As this solution involves a cosine it is clear that a localized structure appears. This structure
has a clear internal length 27/w?. It can be concluded first that the threshold of possible localization in a
second gradient model like the one studied here is the same as the threshold of localization for the cor-
responding underlying first gradient model. It is important to emphasize that the localization criterion of
studied second gradient models involves only the first gradient part of the model. However, as localized
solutions are linked with a characteristic length which decreases as the medium is more and more plastic
and which is infinite at the threshold of localization the appearance of a localized band depends on the
geometry and on the boundary conditions of the whole problem. Practically this means that appearance of
localization can be somewhat delayed for a second gradient media.
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If we are dealing with a material for which normality holds and if the chosen axes are the principal
directions of the stress then I'},,, = I';,;; = 0 and similarly to elastic solutions, equations for i’ and i’ are
uncoupled.

Keeping now the same value for the stress and the hardening parameter /, but modifying now the
orientation of the stress with respect to the chosen axes (which means that the components a1, 2, and g,
vary according to the classical formulae or rotation of a second order tensor) allow us to exhibit additional
remarks. For every case seen above the solution of the characteristic equation varies continuously with
respect to the orientation of the stress. Consequently as for the classical model (i.e. first gradient model)
localization can be possible for a fan of stress orientation (with respect to the shear band). However once
more for the second gradient model only, it is possible that details in the geometry of the body and/or of the
boundary conditions inhibit the localization phenomenon.

6.5. Examples

In order to test the feasibility of the proposed way of solving some rate problems for local second
gradient models, we present hereafter two solutions. Both are built up by assuming a central loading (soft)
zone surrounded by two unloading (hard) zones (of course, other solutions are possible). The model used is
the one detailed in Section 5.3.4. The nonlinear equations described in Section 6.3 are solved in an iterative
manner.

In both computations, the constitutive parameters are

e K =50 MPa
e G=0625MPa
e f=0.25rad

The values of the parameters are chosen to be reasonably consistent with the Vardoulakis example (see
Vardoulakis and Sulem (1995), chapter 6). The stress state is the same in both cases but with a different
orientation with respect to x axis. The principal stress values are —1.8 MPa and —0.3 MPa, as we use the
classical sign convention, they are negative which means that they are compression stresses. This gives a
mobilized friction angle u = 0.714 rad. In case one x and y are the principal directions.

e g,.=—18 MPa
o, = —0.3 MPa
oy =0 MPa

In the second case the angle between the x axis and the principal direction is —0.8 rad, which gives the
following values

* 0, =—1.028 MPa
¢ g, =—1.072 MPa
, = —0.750 MPa

°
Q.
s
|

12345

The width of the studied domain / is chosen to be 15 cm. a and a* are chosen to give reasonable

internal lengths for a sand.

e 2% =25 MPam
o o =25MPam



8524 R. Chambon et al. | International Journal of Solids and Structures 38 (2001) 8503-8527

Finally, besides the orientation of the stress state with respect to the x axis, the boundary conditions
differ. In case one we have

o . =1
e 1,=0

In case two we have:

e 1. =0
o 1, =1

The units are not specified because the time unit is not specified in this kind of problem.

Let us now discuss the results. It is clear that the case number one is in fact a one-dimensional problem as
the x axis is a symmetry one whereas case 2 is a true 2D problem. In both cases a deformed grid computed
by multiplying the rate by a magnification factor is plotted in Fig. 2 for case 1 and in Fig. 4 for case 2. In
order to check the loading—unloading criterion (Eq. (105)), this criterion is plotted as a function of x, in Fig.
3 for case 1 and in Fig. 5 for case 2. This allows us to clearly detect the width of the central (soft) part which
are delimited by neutral loading, which means the annulment of the criterion. A comparison between Figs.
3 and 5 show clearly a great difference between the two cases whereas it is not the case by inspecting the
deformed grids. This induces us to be cautious by deducing internal length by observing experimental data.

Fig. 2. Deformation pattern for case 1.
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Fig. 3. Loading criterion as a function of x for case 1.
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7. Conclusion

It is possible to develop straightforwardly models with microstructure inside the classical framework of
plasticity by restricting such development to local models. The advantage of such studies is clear thermo-
dynamic statements. Moreover by studying some simple boundary value rate problems, it is possible to
exhibit some analytical solutions and to get some insight in shear band analysis. It is clear that all these
models exhibit the same kind of behavior when the localization threshold is reached. They provide internal
lengths and consequently regularization of the solutions but this does not restore uniqueness properties for
the corresponding boundary value problems.

Among these models, the second gradient model and the Cosserat second gradient model are likely well
adapted to geomaterials. Particularly the Cosserat second gradient model can be used for noncohesive
geomaterials. Some results seen in the literature support such a conclusion. However, contrary to metal
plasticity for which it is possible to base second gradient models on micro and mesoscale analysis, the
micro-macro studies of geomaterials behavior are less advanced. It is likely that the good constitutive
equation with microstructure useful to model geomaterials depends on the materials itself and on the
pressure range. Further studies are needed.

Meanwhile, it is possible to construct solutions (even in a two-dimensional simplified case) for some rate
boundary value problem involving all the models with microstructure. These problems and the corre-
sponding solutions are clearly nonlinear as they involve loading as well unloading branches of the models.
However, the only way to get general solutions for second gradient boundary value problems is the
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numerical computation, but knowledge of analytical solutions is a strong advantage as these solutions can
be used as benchmarks for the tests of numerical codes.

A way of dealing with such models in numerical analysis by using Lagrange multipliers is suggested.
Work is now in progress concerning two-dimensional finite element computations with models described in
this paper.

Let us emphasize as a final comment that the method used to get the analytical solutions can be de-
veloped as in the given example for all the microstructured models. Moreover it is possible to develop such
theories and such analytical studies within the damage mechanics framework in the same spirit using the
same key point, i.e. the neutral loading of the junction points between loading and unloading parts of the
sample.
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